

944 | P a g e

ROUCAIROL AND CARVALHO OPTIMIZATION IS

PRONE TO DEADLOCK

Rajeev Ranjan Kumar Tripathi
1
, Ankan Srivastava

2
,

Shivam Kumar Pandey
3

1
 Assistant Professor, Department of CSE, Buddha Institute of Technology, GIDA, Gorakhpur (India)

2,3
 Student, Department of CSE, Buddha Institute of Technology, GIDA, Gorakhpur (India)

ABSTRACT

Critical section problem is a well known problem in Computer Science. It arises when multiple processes or

threads simultaneously try to access shared resources like physical devices or logical objects. In Conventional

Operating System Design, we use semaphores to solve this one. In Distributed System due to absence of shared

memory we cannot implement the same solution. Various approaches are given to solve the critical section

problem in Distributed System. An algorithm that solves critical section problem should have following

properties like fairness along with deadlock freedom, freedom from starvation and fault tolerant. Ricart and

Agrawala suggested message based approach to get mutual exclusion in Distributed System. This approach

fairly deals with the critical section problem. Roucairol and Carvalho suggested an optimization for the given

approach. This paper is shedding lights on the proposed optimization. This paper finally concludes that though

the optimization has a better performance over the original one yet this one is compromising with the fairness.

Keywords— Critical Section, Distributed System, Fairness, Deadlock, Starvation, Fault Tolerance.

I. INTRODUCTION

Distributed System is a collection of inter connected nodes that work together to get a specific goal. Each node

has some pre defined roles. Nodes communicate with each other only by message passing. Distributed System

has inherent limitations of 1) Shared Memory & 2) Global Clock [1, 2, 3]. In an application, nodes may be in

different time zones. It is almost impossible to synchronize the clocks associated with the individual nodes due

to clock drift rate. Again if processes are running at different machines we cannot terminate them in the same

manner as we do in a standalone machine. A resource may be shared in two different ways 1) Read Only Mode

& 2) Exclusive Mode. Note that if sharing is in read only mode, simultaneously many processes, threads and

users can access this one. This sharing does not cause the critical section. Critical section arises when sharing is

in exclusive mode. Algorithms designated for the mutual algorithms basically generates schedule when multiple

requests reach to access the critical section [1, 2, 3]. We can broadly categorise the algorithms given to get

mutual exclusion in Distributed System in two different ways [1]:

A. Message Based

B. Token Based

In message based algorithms, site interested to execute critical section sends REQUEST messages to all other

participants. On reception of this message, participants cannot send the REPLY message to the sender if they

945 | P a g e

have already sent REPLY message to a site which is still executing the critical section. When a site exists from

the critical section it sends RELEASE message. The RELEASE message works as an acknowledgement. If

participants have received the RELEASE message from the site to which REPLY message was sent, REPLY

message to the new REQUEST is sent. Lamport’s Algorithm, Ricart-Agrawala Algorithm and Maekawa

Algorithm come under this category. In token based algorithm, a TOKEN is available in the system. A site can

enter into the critical section if it has the TOKEN. If a site wants to execute the critical section and it has not

TOKEN, the site broadcasts REQUESTS to the other sites. If the site having the TOKEN is not currently

executing the critical section, sends back the TOKEN. If it is already executing the critical section, received

REQUEST is kept in waiting state in a queue. Suzuki-Kasami Broadcast Algorithm, Raymond Tree Based

Algorithm and Singhal Heuristic Algorithm come under this category. Generally we measure the algorithm’s

performance on two parameters: time and space. In this scenario algorithm’s efficiency is measured in terms of

messages required to invoke critical section at a time. In next section this paper is describing the essential

properties required by the mutual exclusion algorithms.

II. REQUIREMENTS

Primary requirement for a mutual exclusion algorithm is that only one site can only execute the critical section.

No two sites can simultaneously execute the critical section at any cost. Besides this followings are some

other requirements [1]:

A. Freedom from Deadlock: Mutual exclusion algorithm should be free from deadlock. In message based

algorithm, a site should not wait infinitely for the REPLY message. In token based algorithm, a site should

not wait infinitely for the TOKEN.

B. Free from Starvation: A site should not be forced to wait infinitely whether on the other there is a site which

is frequently executing the critical section. That is every site should get a chance to execute the critical

section.

C. Fairness: Permission for executing the critical section should be always granted in the same manner in

which the REQUESTS appear. That is disposal of REQUESTS should be in First Come First Serve (FCFS)

basis. When we have to introduce fairness in a system, queue is the most appropriate data structure to use.

That’s why all the algorithms which are based either on message or on token usage the queue.

D. Fault Tolerance: A mutual exclusion algorithm should work even in presence of any failure.

 Lamport was the first who had proposed an algorithm to achieve mutual exclusion in Distributed System.

In next section, this paper is exploring the Lamport’s approach to get mutual exclusion in Distributed

System.

III. LAMPORT’S APRROACH OF MUTUAL EXCLUSION

In 1978, Lamport proposed this concept. Every site maintains a request set. Let there are n sites in a system. The

request set of site Si will contain all other sites. So the size of request set (Ri) of Si is (n-1). That is in Ri, Si is

absent. Site Si has a request queue (request_queuei). In request_queue, incoming requests are placed in the same

order in which they arrive. Every REQUEST has a timestamp associated with it. For timestamp we have a clock.

Every site Si has a clock Ci. Every REQUEST has two tupples: timestamp and the site identifier. Let two

946 | P a g e

REQUESTS are coming from Sj and Sk as (tsj, j) and (tsk, k). Where tsj is indicating the timestamp associated

with this REQUEST and j denotes that this REQUEST is coming from site Sj and the similar interpretation for

the second REQUEST. Let these REQUESTS arrive at Si. In request_queuei , REQUEST of Sj will be at the top

if and only if tsj<tsk else REQUEST of Sk will be at the top in request_queuei.

3.1 Algorithm

1. Requesting the critical section

 When a site Si wants to execute the critical section it sends a REQUEST (tsi, i) to all the sites of its

request_queuei. The site Si places this REQUEST in its request_queuei. Note that (n-1) REQUESTS are sent

by Si.

 On reception of this REQUEST, the site Sj sends a REPLY message to Si. The REPLY message is also

equipped with the timestamp and the site identifier. The site identifier attached with the REPLY informs the

receiver about the originator of this REPLY. Happened before (->) relationship is used to identify that the

received REPLY is for in response to the REQUEST made or not.

2. Executing critical section

Site Si enters into the critical section when two conditions meet together:

 Si has received REPLY messages with timestamp larger than tsi from all other sites.

 Si’s request is at the top of request_queuei.

3. Releasing the critical section

 The site Si when exits from the critical section, it removes its REQUEST from its request_queuei and sends

RELEASE messages to all the sites. Note that release message is also equipped with the timestamp and

identifier. This timestamp is again used by the receivers to determine that it is coming in response of the

REPLYS that they have earlier sent to the Si.

 When a site Sj receives the RELEASE message, it deletes the REQUEST of Si from its request_queuej and

sends the REPLY to the site whose REQUEST is in its request_queuej after the deleted request.

A. Performance

For each critical section execution, we have to spend 3(n-1) messages. First (n-1) REQUEST messages are

sent, then (n-1) REPLY messages are received and finally (n-1) RELEASE messages are sent again.

B. Proof of Correctness

This proof is based on contradiction. Let two sites Si& Sk are simultaneously executing the critical section.

Fig.2 Sites requesting from the permission

Si Sj

Sk

947 | P a g e

The site Sj receives two REQUESTS from Si and Sk as: (tsi ,i) and(tsk ,k). Let Sj sends REPLY to the site Si,

this will be if and only if tsi<tsk (as per the algorithm). Let Sj sends REPLY to the site Sk, this will be if and

only if tsk<tsi (as per the algorithm).These two conditions cannot occur simultaneously. Finally we can

conclude that only one site is executing the critical section [6].

To reduce the number of messages required in critical section invocation, we have only two approaches:

 Override a message so that a single message can play role of more than one message.

 Reduce the size of request set.

Above mentioned approaches are optimizations. Ricart-Agrawala approach follows the first criteria while

Maekawa approach follows the second. Next section of this paper is describing the Ricart-Agrawala algorithm

IV. RICART-AGRAWALA ALGORITHM

In Ricart-Agrawala algorithm all the assumptions are same except that REPLY message works as both REPLY

and RELEASE.

 The Algorithm

1. Requesting the critical section:

 When a site Si wants to enter the critical section, it sends a timestamped REQUEST message to all the sites

in its request set.

 When site Sj receives a REQUEST message from site Si, it sends a REPLY message to site Si if site Sj is

neither requesting nor executing the critical section or if site Sj is requesting and Si’s request’s timestamp is

smaller than site Sj’s own request’s timestamp. The request is deferred otherwise.

2. Executing the critical section

 Site Si enters the critical section after it has received REPLY message from all the sites in its request set.

3. Releasing the critical section

 When site Si exits the critical section, it sends REPLY message to all the deferred requests.

A site’s REPLY messages are blocked only by sites that are requesting the critical section with higher priority

(i.e., a smaller timestamp). Thus, when a site sends out REPLY messages to all the deferred requests, the site

with the next highest priority request receives the last needed REPLY message and enters the critical section.

The execution of critical section requests in this algorithm is always in the order of their timestamp.

4. Performance

The Ricart-Agrawala algorithm requires 2(N-1) messages per critical section execution: (N-1) REQUEST and

(N-1) REPLY messages [5].

Its correctness proof is same as Lamport’s approach.

V. ROUCAIROL AND CARVALHO OPTIMIZATION

Roucairol and Carvalho [4] proposed an improvement to the Ricart-Agrawala algorithm by observing that once

a site Si has received a REPLY message from a site Sj, the authorization implicit in this message remains valid

until Si sends a REPLY message to Sj (which happens only after the reception of a REQUEST message from Sj).

Therefore, after site Si has received a REPLY message from site Sj, site Si can enter its critical section any

948 | P a g e

number of times without requesting permission from site Sj until Si sends a REPLY message to Sj. With this

change, a site in the Ricart-Agrawala algorithm requests permission from a dynamically varying set of sites and

requires 0 to 2(N-1) messages per CS execution.

VI. ANALYSIS OF ROUCAIROL AND CARVALHO OPTIMIZATION

Let a site Si gets permission from all the sites and it enters into the critical section. During execution some more

REQUESTS are coming to Si for the permission. If site Si is repeatedly executing the critical section all the

REQUESTS will be treated as deferred REQUESTS. Requesting sites have to wait infinitely. Though this

optimization optimizes the execution of critical section by consuming zero messages in next subsequent

invocation, starvation occurs for the other sites.

VII. CONCLUSION

Optimization approach suggested by Roucairol and Carvalho is not fairly good. Once a site gets permission to

execute the critical section it remains always in critical section. Ricart-Agrawala approach uses request_queue to

introduce fairness. REQUESTS are always processed in the same ways as they arrive. But the proposed

optimization tends the Ricart-Agrawala approach to starvation.

REFERENCES

[1] SINGHAL AND SHIVARATRI, “ADVANCED CONCEPTS IN OPERATING SYSTEM,” 18TH REPRINT EDITION,TMH.

[2]Coulouris, Dollimore and Kindberg, “Distributed System Concepts and Design,” 4
th

 Edition, Pearson

Education.

[3] Gerard Tel, "Introduction to Distributed Algorithms," 2nd Edition, Cambridge University Press, 2000.

[4]Carvalho O.S.F. and G. Roucairol, “On Mutual Exclusion in Computer Science, Technical Correspondance,”

Journal of ACM, 1985.

[5] Ricart , G. and A.K. Agrawal, “ An optimal Algorithm for Mutual Exclusion in Computer Networks,”

Communication of the ACM, Jan. 1981.

[6]Lamport, L, “Time, Clocks and Ordering of Events in Distributed Systems,” Communication of the ACM,

Jan. 1978.

