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ABSTRACT 

One of the main problems in deep sub-micron designs of high speed buses is the propagation delay due to the 

crosstalk effect. To alleviate the crosstalk effect, there are several types of crosstalk avoidance codes proposed in 

the literature. In this paper, we develop explicit constructions of two types of memoryless crosstalk avoidance codes: 

1) forbidden overlap codes (FOCs) and 2) forbidden transition codes (FTCs). Our constructions for both FOCs and 

FTCs have the largest set of codewords. To the best of our knowledge, this is the first explicit construction of a FOC 

that has the largest set of codewords. Our approach is based on the C-transform developed for routing optical 

packets in optical queues. We show such an approach can also be used for constructing limited-weight no adjacent 

transition codes. 
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I. INTRODUCTION 

As VLSI technology has marched into the deep sub-micrometer (DSM) regime, new challenges are presented to 

circuit designers. As one of the key challenges, the performance of bus based interconnects has become a bottleneck 

to the overall system performance. In large designs [e.g., systems-on- chip (SoCs)] where long and wide global 

busses are used, inter-connect delays often dominate logic delays. Once negligible, crosstalk has become a major 

determinant of the total power consumption and delay of on-chip busses. The impact of crosstalk in on-chip busses 

has been studied as part of the effort to improve the power and speed characteristics of the on-chip bus 

interconnects. 
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Fig. 1. On-Chip Bus Model With Crosstalk. 

A simplified on-chip bus model with crosstalk denotes the load capacitance seen by the driver, which includes the 

receiver gate capacitance and also the parasitic wire-to-substrate parasitic capacitance is the inter-wire coupling 

capacitance between adjacent signal lines of the bus. 

In practice, this bus structure is electrically modeled using a distributed resistance-capacitance (RC) network, after 

including the parasitic resistance of the wire as well (not shown in Fig. 1). For DSM processes, it is much greater 

than [7]. Based on the energy consumption and delay models given in [1], the energy consumption is a function of 

the total crosstalk over the entire bus. The delay, which deter- mines the maximum speed of the bus, is limited by 

the maximum crosstalk that any wire in the bus incurs. It has been shown that reducing the crosstalk can boost the 

bus performance significantly. Different approaches have been proposed for reducing Crosstalk by eliminating 

specific data transition patterns. Some schemes focus on reducing the energy consumption, while others focus on 

minimizing the delay. Certain schemes offer improvements in both. In this paper, we focus on crosstalk avoidance 

for delay reduction. As the crosstalk is dependent on the data transition patterns on the bus, patterns can be classified 

based on the severity of the crosstalk they impose on the bus. A more detailed explanation of pattern classification is 

given in Section II-A. The general idea behind techniques that improve on-chip bus speed is to remove undesirable 

patterns that are associated with certain classes of crosstalk. Among the proposed schemes, some are more 

aggressive than others (they remove more patterns and achieve higher speed improvements). Different schemes 

incur different area overheads since they require additional wires, spacing between wires or both. As one of the 

simplest techniques to eliminate the crosstalk induced delay penalty, passive shielding inserts passive (e.g., 

grounded) shield wires between adjacent active data lines [8]. This technique can reduce the bus delay by nearly 

50%. However, it requires doubling the number of wires and hence incurs a 100% area overhead. Crosstalk can also 
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be exploited to speed up the bus. Techniques such as active shielding can reduce the bus delay by up to 75% at the 

price of 200% or more area over- head. 

II. LITERATURE SURVEY 

An information theoretic framework has been developed to study the relation between speed (number of operations 

per time unit) and energy consumption per operation in the case of synchronous digital systems.  

The theory provides us with the fundamental minimum energy per input information bit that is required to process or 

communicate information at a certain rate. The minimum energy is a function of the information rate, and it is, in 

theory, asymptotically achievable using coding. This energy-information theory combined with the bus energy 

model result in the derivation of the fundamental performance limits of coding for low power in deep sub-micron 

buses. Although linear, block linear and differential coding schemes are favorable candidates for error correction, it 

is shown that they only increase power consumption in buses. Their resulting power consumption is related to 

structural properties of their generator matrices.  

In some cases the power is calculated exactly and in other cases bounds are derived. Both provide intuition about 

how to re-structure a given linear (block linear, etc.) code so that the energy is minimized within the set of all 

equivalent codes. A large class of nonlinear coding schemes is examined that leads to significant power reduction. 

This class contains all encoding schemes that have the form of connected Finite State Machines. The deep sub-

micron bus energy model is used to evaluate their power reduction properties. Mathematical analysis of this class of 

coding schemes has led to the derivation of two coding optimization algorithms. Both algorithms derive efficient 

coding schemes taking into account statistical properties of the data and the particular structure of the bus. This 

coding design approach is generally applicable to any discrete channel with transition costs Coding for speed on the 

bus is introduced.  

III. C-TRANSFORM 

In this section, we first briefly review the C-transform and its associated properties that is developed by routing 

optical packets in optical queues.  

Definition 1: Consider an M-vector UM = (u1, u2, . . . , uM−1, uM) with ui ∈ N, i = 1, 2, . . . ,M. Define a mapping C 

: x ∈ {0} ∪ N → 2M as follows: 

          C(x) =(d1(x), d2(x), . . . , dM−1(x), dM(x)) 
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        Where dM(x) =_ 1, if x ≥ uM    0, otherwise 

            and for i = M − 1, . . . , 2, 1, 

          di (x) is given recursively by 

             di (x) = 1, if x – M k=i+1 

           dk (x) · uk ≥ ui 

We call C(x) the C-transform of x with respect to the basis vector UM. Intuitively, we can view the C-transform as a 

“greedy” binary numeral system as the C-transform of x is obtained by recursively subtracting x from uM. In 

particular, if we choose ui = 2i−1 for all i , then the C-transform of x is simply the usual binary representation of x. 

In addition, if we choose ui = 2i−1 _ , 1 ≤ i ≤ s and ui = i−1 =i−s u , i ≥ s + 1, then it is the normal-form 

Fibonacci number system of order s. One of the most important properties of the C-transform is the complete 

decomposition property, i.e., every integer (within the representation range) can be written as a sum of distinct ui ’s. 

For example, consider the five-vector U5 = (1, 2, 3, 6, 10) as the basis vector. Then, C(14) = (1, 0, 1, 0, 1). Note that 

14 = 1×1+0×2+1×3+0×6+ 1×10 and it can be written as a sum of distinct ui ’s. The complete decomposition 

property was previously proved in Lemma 5 and it is stated formally in the following proposition. A similar result 

was also reported in Lemma 3.1. 

In this section, we show how one can construct memoryless FOCs by using the C-transform. Consider a symbol set 

S. An M-dimensional memoryless binary code C for S is a mapping that maps every element in S to a codeword 

with an M-dimensional binary representation. An M-dimensional memoryless binary code for S is a forbidden 

overlap code (FOC) if a transition from one codeword to another codeword does not have the following two types of 

transitions for any three adjacent bits: 101→010 or 010→101. Algorithm for the construction of a FOC: Symbol set: 

Let u1 = 1, u2 = 2, u3 = 4 and ui+1 = ui + ui−1 + ui−2 for i = 3,...,M −1. Consider the symbol set S ={0,1,2,...,uM + 

uM−1 + uM−2 −1}. Encoding: For x ∈ S, compute the C-transform of x, C(x) 

=d1(x),d2(x),...,dM−1(x),dM(x).Generate the M-dimensional binary codeword for x, denoted by c(x) = 

c1(x),c2(x),...,cM(x)), by ci(x) =di(x), if i is odd, 1−di(x), if i is even. Decoding: For a binary codeword c = 

(c1,c2,...,cM), generate the M-vector (d1,d2,...,dM) by di =ci, if i is odd, 1−ci, if i is even. 

Decode the codeword c as 

x = M X i=1 di ·ui. (8) Note that the steps  are simply to invert every even-numbered bit. Thus, they are inverse 

functions of each other.  
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Since we choose u1 = 1, u2 = 2, u3 = 4 and 

 ui+1 = ui +ui−1 +ui−2 for i = 3,...,M −1, the assumption (A1) in Proposition 2 holds and thus we have from the 

complete decomposition property that every codeword can be decoded correctly by using (8). In the following 

theorem, we show that the set of codewords generated by the above algorithm is indeed a FOC.  

Theorem : The set of codewords  

{c(x) =( c1(x),c2(x),...,cM(x)), x ∈ S} generated by the above algorithm is indeed a FOC. Moreover, it is optimal in 

the sense that it has the largest number of codewords in a memoryless M-dimensional FOC.  

Proof: For this, we need to show a transition from one codeword c(x1) to another codeword c(x2) does not have the 

following two types of transitions for any three adjacent bits: 101→010 or 010→101. We prove this by 

contradiction. First, since we choose u1 = 1, u2 = 2, u3 = 4 and ui+1 = ui + ui−1 + ui−2 for i = 3,...,M−1, the 

assumptions (A1) and (A2) in Lemma 3 are satisfied with ` = 3. Thus,we know from Lemma 3 that for all x ∈ S, 

there are no three consecutive 1’s in C(x).  

Case 1: There is a transition of 101→010: Suppose that for some x1,x2 ∈ S and some i such that 

(ci(x1),ci−1(x1),ci−2(x1)) = (1,0,1) and (ci(x2),ci−1(x2),ci−2(x2)) = (0,1,0). If i is an even number, then di(x2) = 1 

− ci(x2), di−1(x2) = ci−1(x2), and di−2(x2) = 1−ci−2(x2). Thus, we have (di(x2),di−1(x2),di−2(x2)) = (1,1,1).   

There  are no three consecutive 1’s in the  

C-transform. On the other hand, if i is an odd number,  

di(x1) = ci(x1), di−1(x1) = 1 − ci−1(x1), and             di−2(x1) =ci−2(x1). 

Thus, we have  

           (di(x1),di−1(x1),di−2(x1)) = (1,1,1).  

This also contradicts to the result that there are no three consecutive 1’s in the C-transform. Case 2: There is a 

transition of 010→101: The argument for this case is exactly the same as Case 1 with x1 and x2 being interchanged. 

It is known (see e.g., [12], [2]) that the largest number of codewords in a memoryless M-dimensional FOC is NM, 

where NM is characterized by the following recursive equation: Ni+1 = Ni + Ni−1 + Ni−2, 3≤ i ≤ M −1, N1 = 2, N2 

= 4, and N3 = 7. It is easy to see from  that Ni = ui+1, 1 ≤ i ≤ M − 1 and NM = uM +uM−1 +uM−2. Thus, our 

construction of the M-dimensional FOC indeed has the largest number of codewords. 
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Fig. 2. 8B/9B FOC Encoder 

As shown, efficient FOC codes cannot be constructed by using their numeral systems. Instead, they only construct a 

suboptimal FOC using their numeral systems. In comparison with the suboptimal FOC, we note that the 

(asymptotic) code rate  is 0.7925, while the code rate of our optimal memoryless FOC is 0.8791. The key difference 

between theirs and ours is that we add the inverters on the even-numbered buses so that an optimal FOC can be 

represented by using numeral systems and these inverters. We also note that the hardware implementation 

complexity of our algorithm is O(M2). This is the same as those because they all require implementing numeral 

systems. As an illustrating example, we show the block diagram of the 8B/9B FOC encoder and decoder in Figure 1. 

The encoder takes an 8-bit input and encodes it into a 9-bit codeword. The basis vector (u1,...,u9) is shown in the 

8B/9B FOC column of Table I. The COMP/SUB processing unit in the encoder in Figure 1 is further illustrated in 

Figure 2. These are similar to the implementations of the numeral systems (except the additional inverters). The 

decoder in Figure 1(b) takes a 9-bit codeword and decodes it into an 8-bit output. It consists of three stages. In the 

first stage, all the even-numbered bits are inverted. In the second stage, the ith output after the first stage is then 

multiplied by ui i = 1,2,...,9. In the third stage, the 8bit output is generated by summing up the outputs from the 

second stage. Recently, Mutyam  used the transition signaling technique  to construct FTCs. The transition signaling 

technique takes a set of input data indexed in time and computes the transition signals (by using the exclusive OR 

operation) 

 

Fig. 3. COMP/SUB processing unit in the encoder. 
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between any two successive input data. The transition signals are then sent through the bus. We note that the 

transition signaling technique can also be used here to construct FOCs. It is easy to show if there are no 3 

consecutive 1’s in each input data, then by sending the transition signals of these input data there are no transitions 

for any three adjacent bits: 101 → 010 or 010 → 101. However, the FOCs constructed this way are not memoryless 

as the encoder has to store the previous input data for computing the transition signals. Moreover, a simple bit error 

in the bus might have a cascading effect in the decoder that might cause a serious decoding failure. Since both the 

transition signaling technique and our construction for FOCs have the same encoding efficiency, our memoryless 

construction is clearly a better choice than the transition signaling technique as it not only requires lower hardware 

implementation complexity (in both encoding and decoding) but also it is more reliable in decoding (as it does not 

have the cascading decoding failure problem). 

We note that our approach can also be used for the constructions of optimal memoryless FTCs. This is done by 

choosing the basis vector with u1 = 1, u2 = 2, and ui+1 = ui + ui−1 for i = 2, . . . , M − 1. For the symbol set  

S = {0, 1, 2, . . . , uM + uM−1 − 1}, we can then construct an optimal FTC using the encoding scheme and the 

decoding scheme described in the algorithm for the construction of a FOC. Even though the construction and ours 

are both optimal, these two sets of codewords are different as each codeword  has a Fibonacci representation. As an 

illustrating example, we can use the block diagram in Fig. 1 for a 6B/9B FTC encoder/decoder. The basis vector (u1, 

. . . , u9) is shown in the 6B/9B FTC column of Table 1. 

Table 1.  Basis vectors for the 8B/9B FOC, the 6B/9B FTC, and the (9, 6, 3)-NAT code. 

 8B/9B FOC 6B/9B FTC (9, 6, 3)-NAT code 

U1 1 1 1 

U2 2 2 2 

U3 4 3 3 

U4 7 5 5 

U5 13 8 8 

U6  24 13 12 

U7 44 21 20 

U8 81 34 32 

U9 149 55 48 
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IV. SIMULATION RESULTS 

 

Fig. 4. RTL Schematic Diagram 

 

Fig. 5. Simulation Results. 

 

Fig. 6. Synthesis Report. 
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V. CONCLUSION 

We developed an explicit construction for a set of memory-less FOCs. Such a set of memory-less FOCs also 

contains the largest number of codewords. The same approach can also be applied for the construction of a set of 

memory-less FTCs and a set of NAT codes. Both FOCs and FTCs considered in this paper are memory-less codes, 

and their code rates could be significantly improved by considering codes with memory. It was shown that there 

exists a simple bit stuffing algorithm that yields a much higher code rate than the Fibonacci representation .Besides, 

it hardware implementation complexity is only O(M) for an M-bit bus, which is also much lower than the O(M2) 

complexity. Extension along this line for FOCs will be reported separately.  
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